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Abstract. We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at
low-temperature, resulting in spontaneous translational symmetry breaking. The underlying Mott physics is
responsible for such novel self-localization of charge carriers. Interesting transport and dielectric properties
are found as the consequences, including large doping-dependent thermopower and dielectric constant, low-
temperature variable-range-hopping resistivity, as well as high-temperature strange-metal-like resistivity,
which are consistent with experimental measurements in the high-Tc cuprates. Disorder and impurities
only play a minor and assistant role here.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 74.25.Ha Magnetic
properties – 75.10.-b General theory and models of magnetic ordering

1 Introduction

There exist several types of electron localization in con-
densed matter physics. In the presence of disorder or
impurities, waves can be localized due to quantum inter-
ference, which is generally known as the Anderson local-
ization [1]. In a two-dimensional (2D) system carriers are
expected [2] to be always localized with the resistance di-
verging either logarithmically (“weak localization”) or ex-
ponentially (“strong localization”) as T → 0. A different
kind of localization involves the self-trapping of small po-
larons in strong electron-phonon interacting systems. Both
types of localization here mainly concern non-interacting
or weakly correlated electrons.

In the high-Tc cuprates, the undoped system is a Mott
insulator, in which the charge degree of freedom is totally
frozen out by strong on-site Coulomb repulsion. The spins
form an antiferromagnetic long range order (AFLRO)
at low temperature, which quickly collapses upon hole-
doping [3]. At small concentration, δ < 0.05, the doped
holes as charge carriers remain localized with the low-T
resistivity well fit [4–7] by that of traditional variable-
range-hopping (VRH) type, usually applicable to doped
semiconductors. Only when the hole concentration ex-
ceeds 0.05 will the charge carriers be truly delocalized,
where the ground state becomes a d-wave superconduct-
ing state.

But lightly doped high-Tc cuprates are of no conven-
tional doped semiconductors. Here they are doped Mott
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insulators with the majority of the charge degree of free-
dom still remaining frozen. The strongly correlated effect
should thus play a crucial role in the charge transport.
The issue why doped holes should be always localized at
small doping and how they eventually become delocal-
ized with increasing doping is a very important question,
which may also be relevant to understanding the micro-
scopic mechanism of high-temperature superconductivity
in the cuprates.

Recently, a new kind of self-localization, which can be
particularly attributed to the Mott physics, has been pro-
posed [8–10], in which the pure Coulomb interaction is
responsible for the self-localization of electrons near half-
filling. Here disorder or impurities is no longer as essen-
tial as in the Anderson localization, although they may
be helpful to induce a true translational symmetry break-
ing at T = 0. Such a self-localization of holes is caused
by the phase-string effect, referring to a stringlike defect
left by the hopping of a hole which was previously iden-
tified [11] as an irreparable effect in the ground state of
the t−J model no matter whether there is an AFLRO or
not at arbitrary doping [but some extra signs arising from
the exchange between holes will reduce the singular phase
string effect with the increase of doping (see Ref. [11])].
Furthermore, it has been also shown [8] that the charge
localization does not contradict to the photoemission ex-
periments [12] in which the observed “quasiparticle” dis-
persion in the single-particle spectral function can be well
accounted for in terms of the “spinon dispersion”.

In principle, it is not surprising that due to the sep-
aration [13] of spin and charge degrees of freedom in a
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doped Mott insulator, the charge carriers can get local-
ized at low doping by scattering with fluctuations orig-
inated from an independent degree of freedom. In fact,
in a different gauge-theory approach to the t − J model,
the localization of charge carriers has been also obtained
[14], due to the scattering between the charge carriers and
gauge fluctuations.

In this paper, we study such kind of self-localization
phenomenon in a Mott insulator based on an effective
model, known as the phase string model, which was ob-
tained previously [11,15] as a low-energy description of the
t−J model. We shall focus on the spin ordered phase (not
necessarily long-range ordered) at very low doping in this
model and explore the unique charge self-localization be-
havior. As shown previously, a doped hole in such a model
will induce [9,10] a dipole-like spin structure in the spin
ordered phase, with the kinetic energy being severely frus-
trated by the phase string effect. In this work, we demon-
strate that such a hole-dipole picture can be accurately
described, based on the phase-string model, as each holon
induces a topological “meron” distortion from the spinon
degrees of freedom and two objects are bound together
and self-trapped in real space. This is mathematically en-
sured by a dual Meissner effect and “flux-quantization”
condition in the model. We then discuss the correspond-
ing transport properties and show that the thermopower
saturates to a Heikes-like formula as the result. While the
resistivity exhibits a Mott-VRH-like behavior at low tem-
perature, the collapse of the hole-dipole composites and
the release of free “holons” at high-temperature will lead
to a strange-metal-like behavior there. Furthermore, the
existence of the hole dipolar structure predicts a large
doping-dependent dielectric constant, which diverges at
the deconfinement. All of these properties seem to paint a
consistent picture for the complex transport and dielectric
phenomena observed in the high-Tc cuprates.

The remainder of the paper is organized as follows. In
Section 2, we discuss the self-localization of doped holes
in the spin ordered phase at low doping by using the dual
Meissner effect and “flux-quantization” condition based
on the phase-string model. A renormalization group (RG)
analysis will be used to determine the phase diagram.
In Section 3, we discuss the experimental implications of
the self-localization, including the thermopower, resistiv-
ity and dielectric constant, and make comparisons with
experimental measurements. Finally, the conclusions are
presented in Section 4.

2 Self-localization of holes in a doped Mott
insulator

We shall adopt the phase-string model as the microscopic
description of how doped holes move in an antiferromag-
netic (AF) Mott insulator. This model is obtained [15] as a
low-energy effective theory based on the t−J model, which
can accurately describe AF correlations at half-filling and
possesses a d-wave superconducting ground state at dop-
ing concentrations larger than xc (�0.043 at T = 0) [9].

What we will be interested in the following is the non-
superconducting phase below the critical doping xc, where
an AFLRO or a spin glass state persists at low tempera-
ture.

The existence of such a non-superconducting phase is
the consequence that the long-range AF correlations (not
necessarily AFLRO) win in the competition with the ki-
netic energy of holes at sufficiently low doping. In the
phase-string model, this phase will be characterized by the
“spinon condensation”. In the following, we shall analyze
in detail the behavior of doped holes in this low-doping
regime and demonstrate that the charge carriers must be
self-localized in the ground state, resulting in spontaineous
translational symmetry breaking.

2.1 Phase-string model

We start with the phase-string model Hstring = Hh +Hs,
which is composed [15] of two terms: The charge degree
of freedom as characterized by the “holon” term

Hh = −th
∑

〈ij〉

(
eiAs

ij

)
h†ihj +H.c. (1)

where th ∼ t and the “holon” operator, h†i , is bosonic; the
spin degrees of freedom as described by the “spinon” term

Hs = −Js

∑

〈ij〉σ

(
eiσAh

ij

)
b†iσb

†
j−σ +H.c. (2)

where Js ∼ J and the “spinon” operator, b†iσ, is also
bosonic.

Basic features of this model are as follows. At half
filling, the gauge field Ah

ij can be set to zero in equa-
tion (2) andHs reduces to the Schwinger-boson mean-field
Hamiltonian [16], which describes both the long-range and
short-range AF correlations fairly well. Upon doping, Ah

ij
is no longer trivial as it satisfies a topological constraint:∑

C A
h
ij = π

∑
l∈ΣC

nh
l (ΣC denotes the area enclosed by

C) with nh
l denoting the “holon” number at site l, which is

interpreted as that each “holon” behaves like a π-fluxoid
as felt by the “spinons”. Thus, Ah

ij will play the key role
of frustrations introduced by holes that act on the spin
degrees of freedom. Similarly, the “holons” are also sub-
jected to frustrations from the spin background, through
the gauge field As

ij in equation (1). Here As
ij satisfies

a topological constraint:
∑

C A
s
ij = π

∑
l∈ΣC

(
nb

l↑ − nb
l↓

)

with nb
lσ denoting the “spinon” (with index σ) number

at site l, which can be interpreted as that each “spinon”
behaves like a ±π-fluxoid as perceived by the “holons”.

The spin and charge degrees of freedom are thus mu-
tually “entangled” in the phase-string model Hstring based
on two topological gauge fields, Ah

ij and As
ij . It has been

shown [17] that if the holons (which are bosons) experience
a Bose condensation at larger doping, the spinons, which
behave as vortices according to As

ij , must be “confined” at
low temperature. Such a “spinon confining phase” actually
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Fig. 1. Holes are self-trapped in real space at δ < xc by the
phase-string effect, carrying dipolar spin configurations. Holes
become delocalized at δ > xc, with the critical doping concen-
tration xc = 0.043 (see text).

corresponds to the d-wave superconducting phase in the
model. Here, the spinon confinement occurring in the spin
degree of freedom is closely related to the superconducting
phase coherence in the charge degree of freedom.

In contrast, if the spinons (which are also bosons)
are Bose condensed at low doping, free holons as “vor-
tices” cannot live alone either, and must be also “con-
fined” [9,10]. Such a spinon condensed phase is thus also
known as “holon confining phase”, which constitutes a
non-superconducting solution of the phase-string model in
the lightly doped regime. In the following, we will demon-
strate how holons will get self-trapped in real space in
such a phase. The spin ordered phase as characterized
by the spinon condensation is therefore intimately related
to the charge self-localization (holon confining). Figure 1
schematically illustrates the above-mentioned two phases
at different doping concentrations.

2.2 Antimerons induced by holons:
“flux-quantization” condition

Let us recall that at half-filling, the Bose condensation of
spinons,

〈biσ〉 �= 0 (3)

will naturally gives rise to an AFLRO lying in the x-y
plane [18] with

〈
S+

i

〉
= (−1)i〈bi↑〉〈bi↓〉. However, once a

hole is added into such an ordered state, the energy cost
associated with a bare holon, if the condensation (3) re-
mains unchanged, would become logarithmically divergent
in terms of Hs

∆Es � J̃s

∫
d2r

[
Ah

]2

∼ π

2
J̃sln(L/a) → ∞, (4)

where J̃s ≡ Js〈bi↑〉〈bi↓〉 ∼ 0.3Js, Ah is the continuum
version of Ah

ij , L is the size of the sample and a is the
lattice constant.

But this is not the correct physical picture. Note that
equation (3) suggests that spinons are in a “superfluid”
state. In reality, the two-component spinon “superfluid”

in equation (3) can response to the presence of the vec-
tor potential Ah by forming spin supercurrent, like the
Meissner effect in a superconductor. One may call it a dual
Meissner effect here. Then the induced spin supercurrent
can screen the effect of the “magnetic fluxes” introduced
by Ah

ij in Hs in a similar fashion as the flux-quantization
phenomenon in a superconductor, such that the resulting
renormalized holon will acquire a finite self-energy. In the
following, we demonstrate how this screening effect takes
place in the phase-string model (2).

Define 〈biσ〉 ≡ √
ρs

ca
2ziσ, if i ∈ A sublattice, and

〈biσ〉 ≡ √
ρs

ca
2z∗i−σ, if i ∈ B sublattice, with |zi↑|2 +

|zi↓|2 = 1. Here ρs
c denotes the spinon “superfluid” den-

sity. Then the condensed part of Hs can be written as

Hcond
s = −Js

∑

〈ij〉σ

(
eiσAh

ij

)
〈b†iσ〉〈b†j−σ〉 + c.c.

= −J̃s

∑

i∈A,j=NN(i)

∑

σ

(
eiσAh

ij

)
z∗iσzjσ + c.c

� −J̃s

∑

i∈A,j=NN(i)

∑

σ

(
1 + iσAh

ij −
1
2

(
Ah

ij

)2
)

× z∗iσzjσ + c.c

� E0
s + iJ̃s

∫
d2r

∑

σ

σAh · (z∗σ∇zσ − c.c.)

+ J̃s

∫
d2r

(
Ah

)2
(5)

in the continuum limit, where NN denotes the nearest
neighboring sites, J̃s = Jsρ

s
ca

2, and E0
s ≡ −4J̃sN +

2J̃s

∫
d2r

∑
σ |∇zσ|2. The spin “supercurrent”, defined by

Js = −∂Hcond
s /∂Ah, then reads

Js = 2J̃s

(
vs − Ah

)
(6)

where
vs ≡ − i

2

∑

σ

σ (z∗σ∇zσ − c.c.) . (7)

Generally one expects a complicated distribution of the
spin current nearby a holon. But in a distance far away
from the holon, the supercurrent Js should vanish in or-
der to ensure the finiteness of the energy cost introduced
by a holon. The same requirement has been used in a
superconductor to realize the flux quantization. By con-
trast, here we are dealing with the “flux-quantization” in a
two-component superfluid problem with an internal gauge
freedom.

By requiring the spin supercurrent Js vanish at the
boundary C∞ such that

∮

C∞
dr · Js = 0, (8)

one arrives at
∮

C∞
dr · vs −

∮

C∞
dr · Ah = 0. (9)
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Note that
∮

C∞
dr ·vs =

∫
d2r (∇ × vs) · ẑ. By introducing

a unit vector
n =z̄σ̂z

where σ̂ is the Pauli matrix and z̄ ≡ (z∗↑ , z↓), one can
straightforwardly show that

(∇ × vs) · ẑ =
1
2
n · ∂xn× ∂yn. (10)

Thus, equation (8) finally reduces to the following “flux-
quantization” condition

Q ≡
∫
d2r

1
4π

(n · ∂xn× ∂yn)=
1
2π

∮

C∞
dr · Ah

=
1
2
Nh (11)

where Nh is the total number of doped holes.
Therefore, the spinon condensed phase in the phase-

string model can be regarded as a (dual) Meissner state,
in which each holon, due to its attachment to a π flux-
oid, will always induce a “screening” response from the
spinon condensate, which is of topological nature satisfy-
ing the “flux-quantization” condition (11), meaning that
each holon will “nucleate” a spin “meron” configuration
with a topological charge Q = 1/2. Such a meron config-
uration may be pictured as a spin vortex with the unit
vector n lying in a spin x-y plane at a distance far away
from the core, while, near the core, the unit vector n starts
to tilt away from the x-y plane and points towards the z-
axis at the core center, which covers one half of the unit
sphere spanned by n once, in contrast to a skyrmion which
covers the whole unit sphere exactly once with Q = 1.

Finally we note that such holon-induced merons are
called antimerons in the earlier approach [9,10] because
a holon itself also carries a meron (vortex) in the original
spin space. To see this, let us recall that in the phase-string
model, the spin operators are expressed in terms of spinon
operators by [11]

S+
i = (−1)ib†i↑bi↓ exp

[
iΦh

i

]
(12)

and S−
i =

(
S+

i

)†
, Sz

i =
∑

σ σb
†
iσbiσ. In the spinon con-

densed phase, one has
〈
S+

i

〉
= (−1)i〈bi↑〉〈bi↓〉 exp

[
iΦh

i

]
, (13)

which is twisted away from an AFLRO lying in the x-y
plane by the vortices centered at holons as determined by
Φh

i . Here Φh
i is defined by

Φh
i =

∑

l �=i

Im ln(zi − zl)nh
l . (14)

But equation (13) describes an bare holon effect which
would result in a divergent self-energy of the holon as
shown in equation (4). In order to compensate such a vor-
tex configuration associated with a bare holon, the con-
densed spinon fields have to be twisted into

〈biσ〉 → 〈biσ〉 exp
[
i
σ

2
ϑi

]
(15)

with an antimeron configuration ϑi[9,10], which is char-
acterized just by ziσ in the present approach, satisfying
the “flux-quantization” condition (11). Therefore, in the
phase-string model, a renormalized holon is a compos-
ite with a bare holon bound to an induced antimeron as
demonstrated above, while in the original spin space, it is
an object composed of a meron (holon) and an antimeron,
forming a dipole [9,10]. Two descriptions are equivalent.

2.3 Self-localization of holes: RG analysis

According to the above analysis, the infinite self-energy
of a bare holon in the spinon condensed phase can be
removed by “nucleating” a topological spin antimeron
configuration and bound to the latter. This picture is
precisely ensured by the “flux-quantization” condition as
shown above. Since the induced antimeron is an infinite-
size semiclassical object which has no kinetic energy and
cannot propagate, the “confinement” of a holon to it then
means that the holon will be self-trapped in space. Due to
the translational symmetry, these induced antimerons can
be located anywhere in space and therefore will result in
spontaneous translational symmetry breaking in the spinon
condensed phase.

Physically, such a self-localization of charge carriers in
the low-doping regime can be attributed to the irreparable
phase-string effect created by the motion of holes, as dis-
cussed in reference [10]. The phase-string model provides
a mathematical framework to conveniently handle this ef-
fect. In this description, the locations of the antimeron
and the holon inside a dipole constitute the starting and
ending points of the motion of a holon, and the phase-
string connecting such two points has relaxed into a dipo-
lar picture, with a remaining branch-cut connecting two
poles [10].

If one tries to spatially separate the holon from the
induced antimeron, the uncompensated spin supercurrent
Js will increase the self-energy, representing an attractive
potential which binds the bare holon to the antimeron.
According to equation (5), such a potential can be esti-
mated by

V � q2 ln
|r|
a

(16)

at |r| >a, where q2 = πJ̃s, and r is the distance between
the holon and antimeron. At |r| → ∞, V diverges in con-
sistency with equation (4). The same result was also ob-
tained in references [9,10].

When there are many holon-antimeron dipoles, one ex-
pects to see a screening effect on the confining potential
by reducing V to Veff = 1

κV, where κ denotes the dielec-
tric constant. Previously it has been shown [9] that with
the increase of doping concentration, eventually a transi-
tion at T = 0 takes place, as κ → ∞ or Veff → 0, from
the holon self-localization (confining) phase to a delocal-
ization (deconfining) phase at δ = xc � 0.043 (see Fig. 1).
On the other hand, with the increase of temperature, neu-
tral vortex-antivortex pairs like those in the XY model
can also be thermally excited, leading to a conventional
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contribution to the screening effect. To distinguish such
two kinds of vortex-antivortex pairs, we shall call a dipole
associated with a holon as a charged pair and the other
kind as a neutral pair. In the following, we shall treat the
screening effect due to both charged and neutral dipoles on
an equal footing based on an RG treatment [9,19]. In con-
trast to the conventional Kosterlitz-Thouless (KT) theory
[20], here the number of vortex-antivortex pairs remains
finite even at T = 0, where it is equal to δN (i.e., the
number of holons).

The probability for the neutral dipoles with two poles
separated by a distance r is controlled by the neutral pair
fugacity y2

n(r). In the conventional KT theory [20], the
initial y2

n(a) = e−βEn
c , (where β = 1

kBT and the core
energy En

c ∼ q2). But since the charged dipole num-
ber will be always fixed at δ per site, the probability for
the charged dipoles is no longer governed by the fugac-
ity y2

h(a) = e−βEh
c , (where Eh

c denotes its core energy).
Instead, the initial fugacity must be adjusted accordingly
and Eh

c will turn out to be no longer so important [9,19].
In an RG procedure, the contributions from the dipoles

with the sizes between r and r + dr will be integrated
out, starting from r = a. The renormalization effect is
then represented by three renormalized quantities,X(r) ≡
2πκ
βq2 , y

2
n(r), and y2

h(r), which satisfy the following famous
recursion relations [20,21]

dyh/dl = (2 − π

X
) yh, (17)

dyn/dl = (2 − π

X
) yn, (18)

dX/dl = 4π3(y2
n + y2

h), (19)

where r = ael.
Define Y 2(l) = y2

h(l) + y2
n(l), with Y 2

0 = y2
h(l = 0) +

y2
n(l = 0). From equations (17–19), we find

Y 2 = Y 2
0 +

1
π3

(X −X0) − 1
2π2

ln
X

X0
(20)

where X0 ≡ X(l = 0) = 2π
βq2 (with κ(l = 0) = 1). The RG

flow is then obtained from equation (19) by

l =
∫ X

X0

dX ′

4π3Y 2
0 + 4(X ′ −X0) − 2π ln(X ′/X0)

. (21)

The neutral pair fugacity can be determined by y2
n(l) =

e−2
∫ l
0 (2− π

X )dl′ , which will show a similar behavior as in the
conventional KT theory.

What makes the present approach different from the
conventional KT theory is the presence of a finite density
of the charged dipoles (holon-antimeron pairs). Here, by
noting y2

h(r)
r4 d2r as the areal density of charged pairs of

sizes between r and r + dr [20], we have the following
constraint

δ/a2 =
∫ ∞

a

dr 2πr
y2

h(r)
r4

, (22)

or

δ/a2 =
∫ ∞

a

dr 2πr
Y 2(r)
r4

− 1
2π2a2

∫ ∞

0

dle−2l y2
n

=
1

2π2a2

∫ ∞

0

dle−2l dX

dl
− 1

2π2a2

∫ ∞

0

dle−2l y2
n.(23)

After an integral transformation, such a constraint can be
rewritten as

2π2δ +
2πkBT

q2
+

1
2π2a2

∫ ∞

0

dle−2l y2
n = 2

∫ ∞

0

e−2lX dl.

(24)
For βq2 
 1, y2

n < y2
n(0) ∼ exp(−βq2) → 0, the probabil-

ity for neutral pairs remains a small number and can be
neglected.

The RG flow diagram of equations (17–19) is as fol-
lows: the two basins of attraction are separated by the
initial values which flow to X∗ → π

2 and y∗h → 0, y∗n → 0
in the limit l → ∞. In terms of equation (21), the separa-
trix of the RG flows is given by

l =
∫ X

X0

dX ′

4(X ′ − π
2 ) − 2π ln(2X ′/π)

· (25)

“Deconfining” temperature Tde. Based on the RG equa-
tions of (24) and (25), one can determine the critical hole
density δde = δde(T ) or temperature Tde = Tde(δ) at
which the charged dipoles collapse and holons are “de-
confined” from the bound state with the antimerons and
become delocalized.

We first consider the case at T = 0. Since neutral
vortices do not exist at T → 0, equation (24) reduces
to

2π2δde = 2
∫ ∞

0

e−2lX dl =
∫ π/2

0

e−2l dX . (26)

The critical doping δde at T = 0 is then numerically deter-
mined by δde(0) � 0.043, which was previously obtained
in reference [9] as denoted by xc. Now consider the limit
at δ → 0, where we approximately have X(l) � X0 �
X(l → ∞) = π

2 , and equation (24) becomes

2π2δ +
2πkBTde

q2
� π

2
, (27)

which gives rise to Tde(δ = 0) � q2

4kB
= πJ̃s

4kB
and Tde(δ) �

Tde(0) − δπq2/kB at δ � 1.
The holon “confining” and “deconfining” phases are

separated by Tde(δ) in the T−δ phase diagram as shown in
Figure 2. In the “confining” phase, holons are self-trapped
by binding to the induced antimerons. In the original spin
space, each renormalized holon can be regarded as a dipo-
lar object. In this regime, AFLRO or short-ranged AF or-
dering (spin glass) can still form, if the interlayer coupling
is introduced: the Néel transition temperature is obtained
as TN (δ) ≈ − πJ

kB ln α − 3δJ/kB , with α ∼ 10−5 represent-
ing the ratio of the interlayer coupling J⊥/J [9], which is
schematically illustrated in Figure 2 by the dashed curve.
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Fig. 2. The low-doping phase diagram determined by the RG
analysis. The boundary set by Tde(δ) separates the holon con-

fining and deconfining phases with Tde(δ = 0) � πJ̃s
4kB

(see

text). The Néel temperature TN is determined by introducing
an interlayer coupling.

Previously we have also shown that a superconducting
phase will set in beyond δ > xc, where delocalized bosonic
holons will experience a Bose condensation at low temper-
atures.

3 Experimental implications

3.1 Thermopower

The spontaneous translational symmetry breaking in a
lightly doped Mott insulator has very unique experimen-
tal consequences. In such a system, since each doped hole
can be self-trapped anywhere in space, due to the trans-
lational symmetry of the original Hamiltonian, there will
be a large and doping-dependent entropy associated with
the energetically degenerate configurations of holes in real-
space distribution. Such an anomalous entropy associated
with the charge carriers can be directly probed in a ther-
mopower measurement.

It has been previously known [22,23] that for charge
carriers in a narrow band, when the temperature is raised
to exceed the bandwidth, the thermopower will be satu-
rated to a T -independent constant, which is entirely deter-
mined by the entropy change per added carrier. Namely,
the thermopower Se at high-T will reduce to

Se → µ

eT

= −1
e

(
∂S

∂Ne

)
(28)

where µ denotes the chemical potential, S the entropy,
and Ne the total electron number.

The self-localization of doped holes means a vanish-
ing bandwidth of the charge carriers and a spontaneous
translational symmetry breaking with a lot of degenerate
real-space configurations in the distribution of holes. The
formula (28) can be directly applied in such a case based
on a general thermodynamic consideration.

Putting Nh hole on N lattice sites with no-
double-occupancy would give rise to an entropy S =
kB lnN !/Nh! (N −Nh)!, which then leads to the Heikes
formula [22,23] SH

e = kB

e ln (1−δ)
δ , by noting Ne = N−Nh

in equation (28) and using the Sterlings approximation at
N → ∞ with Nh = Nδ. But since each doped hole is ac-
tually a dipolar composite composed of a meron and an
antimeron located at two poles, which do not coincide with
each other as wall as with other hole dipoles, the total en-
tropy should be reduced by this fact. One can determine
the entropy by assuming that two poles of each hole dipole
are loosely bound such that it becomes a problem with a
total number of 2Nh poles, instead of Nh, being put on N
lattice sites without double occupancy. Correspondingly
one obtains the following modified Heikes formula

SmH
e =

kB

e
ln

(1 − 2δ)
2δ

. (29)

This formula has no other fitting parameters and is a uni-
versal function of the doping concentration δ.

The Heikes-type formula (29) is plotted in Figure 3,
as the solid curve, together with the experimental data
obtained at room temperature in the Sr and Ba doped
La2CuO4−y compounds [24] (full square and bigger circle),
Bi2Sr2Ca1−xYxCu2O8+y system [25] (cross), and from
the recent measurement by Wang and Ong [26] in La2Sr
xCuO4−y (small full circle). Figure 3 shows that equa-
tion (29) agrees qualitatively and quantitatively well with
the experimental measurements in the insulating regime,
where the experimental thermopower is sharply reduced
from 300 µV/K near half-filling to around 0 in the metal-
lic regime. The agreement of the theory and experiment
quickly deviates in the metallic regime, where the exper-
imental thermopower remains within a narrow range of
∼±10 µV/K in the optimal and overdoped regimes of the
metallic phase and with a much prominent temperature
dependence. We also caution that in Figure 3, the doping
concentrations in the data for Bi2Sr2Ca1−xYxCu2O8+y

[25] were indirectly determined by the method involving
the Hall effect which may be not as reliable as the hole
density obtained in LSCO and LBCO compounds.

Note that some modified Heikes formulae have been
used [24,25] phenomenologically to fit the magnitude and
doping-dependence of the experimental data in the same
low doping regime. However, it has long been a puzzling
question why the hole bandwidth should be shrunk to an
order of magnitude smaller than the temperature scale
∼100 K in order to explain the experiment. The self-
localization of doped holes in the present theory, on the
other hand, naturally explains this. It is particularly in-
teresting to note that the doping-dependent thermopower
calculated numerically [27] based on the t− J model has
also shown the same qualitative behavior with a compara-
ble magnitude. Furthermore, such thermopower behavior
is also related to the anomalous entropy property accord-
ing to the numerical result [27]. Finally, we would like to
point out that the self-localization of the doped holes will
break down when the temperature is raised beyond the
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µ

δ
Fig. 3. The thermopower determined by equation (29) as a
function of doping concentration (solid curve). Experimental
data are from references [24–26] (see text).

“confining” temperature Tde where the thermopower be-
havior of (29) is no longer valid, as to be discussed later.

An another important experimental fact is that Se has
been generally found [28,24,25] to decrease continuously
to zero as T is reduced below 100 K . Such a phenomenon
can be easily understood in our theory as follows. Since
the holes are self-trapped in space, any impurities, no
matter how weak, can easily pin down them in space at
sufficiently low temperatures, truly breaking the transla-
tional invariance, and therefore causing the diminishing of
the degeneracy (and thus the entropy). The thermopower
should then quickly deviate its high-temperature satura-
tion value and vanish as T → 0. In this regime, the Mott
VRH will dominate the charge transport, as to be dis-
cussed below.

3.2 Resistivity

3.2.1 Mott variable range hopping at low temperature

Experimentally, the cuprate superconductors have univer-
sally exhibited the localization of charge carriers at low
temperatures, in the low-doping regime of δ < 0.05. The
resistivity can be well fit [4–7] by the following Mott VRH
formula

ρM ∼ e(
T0
T )1/γ

(30)

with γ ∼ 3 − 4 and T0 ∼ 106 K at T → 0, usually ap-
plicable to a doped semiconductor. This implies a strong
localization of the doped holes in this regime. But lightly
doped cuprates by no means resemble a doped semicon-
ductor. The strong Coulomb interaction makes it a doped
Mott insulator, in which the doped holes interact strongly
with the spin background. As the result, they can be self-
trapped at low doping even without any disorder as de-
scribed before.

So the self-localization of the doped holes in the lightly
doped Mott insulator will provide an intrinsic mechanism
to explain the localization phenomenon generally observed
in the cuprates. Disorder or impurities, on the other hand,
should only play a minor role in such a system. As noted
above, in the presence of disorder, the spontaneous trans-
lational symmetry breaking of the lightly doped Mott in-
sulator (with a lot of degeneracies) can easily become truly
translational breaking, as the self-localized holes, without
the penalty from the kinetic energy, can be easily pinned
down by the impurities. Therefore, the low-doping phase
can also be regarded as a strong Anderson localization
system at low temperatures, even though the presence of
disorder or impurities may not be really strong. In other
words, the impurity effect will get “amplified” by the Mott
physics at low doping.

Recall that a holon has its own bare hopping term,
governed by Hh in equation (1), which in the continuum
limit reduces to

Hh �
∫
d2r

(−i∇ + As)2

2mh
, (31)

with an effective mass mh = 1
2tha2 and As as the con-

tinuum version of the gauge field As
ij . So the holon is

expected to hop around based on Hh and is bound to
the induced antimeron by the attractive potential (16).
At low temperature, As may be neglected as spinons are
in RVB pairing [15]. Then the Schrödinger equation for a
hole-dipole can be written down by

− 1
2mh

∇2ψ + V ψ = Ehψ. (32)

Define ψ(r) ≡ ψ(r, φ). To compute the radial component
of the wave function we note that asymptotically at large r
the Schrödinger equation reduces to a form whose (radial)
solutions can be expressed as

ψ(r, φ) ∼ e
−√ln r

a0
r

a0 (33)

where a0 = 1√
2mhq2

=
√

th

πJ̃s
a.

Then one may estimate the transition probability Γij

of the holon between any two adjacent antimerons (“im-
purities”), located at i and j, based on equation (33). It
is given by

Γij∼ exp

(
−

2rij
√

ln rij

a0

a0
−εij
T

)
(34)

where rij is the distance and εij is the on-site energy dif-
ference between two “impurity” sites. Except for the fac-
tor

√
ln rij

a0
, this formula is essentially the same as in the

original Mott theory. As the temperature is lowered, the
motion between neighboring sites becomes more difficult
due to the lack of appropriate energy differences. Conse-
quently, it is more likely for the carriers to hop to a more
distant site if this means that the energy difference is less.
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It is known [29–31] as the Mott VRH. Except for a log-
arithmic correction, the resistivity for the 2D Mott VRH
can be determined according to equation (34) by the fol-
lowing expression

ρ(T ) ∼ e(
T0
T )1/3

√
1
3 ln

T0
T (35)

where T0 is a characteristic temperature given by T0 =
13.8
D0a2

0
. Here D0 is the energy density of the impurity states,

which is assumed to be constant in the VRH regime.
It has been well known that once the anisotropic 3D

is considered, the exponent γ in the Mott VRH conduc-
tivity generally will be changed from 3 to 4, with a mod-
ified T0[32]. Furthermore, the interacting effect between
the holons, given by V12 = −πJ̃s ln |r1−r2|

a , has been ig-
nored here, which can also modify the exponent in the
VRH theory.

3.2.2 Crossover to deconfinement at high-temperature

The “deconfining” temperature Tde will represent a char-
acteristic temperature beyond which holons are decon-
fined from the antimerons. Once the holons are unbound
from their antimeron partners and move freely at T > Tde,
their transport will be solely governed by the hopping term
of the phase-string model (31). Here the interaction be-
tween holons and antimerons becomes irrelevant as V → 0
in the above RG analysis. Instead we must consider the
contribution from the gauge fluctuations of As in equa-
tion (31), which will play an essential role for scattering
at high temperatures.

Note that As satisfies the following condition:
∮

C

dr ·As = ±π
∑

l∈ΣC

(
nb

l↑ − nb
l↓

) ≡ ΦC . (36)

We can estimate the strength of the fluctuations of As by
defining

� =
√
〈∆Φ2

�〉, (37)

where Φ� denotes the flux per plaquette:

Φ� = ±2π
1
4

∑

�

Sz
l (38)

according to equation (36). At very high-temperature
limit, one may neglect the NN spin-spin correlations such
that

� ∼ 2π
√
〈(Sz

l )2〉
= π

√
1 − δ ∼ π, (39)

which implies very strong flux fluctuations per plaquette
in the high-T limit.

As a matter of fact, if the fluctuations of As is treated
in the quasistatic limit with an annealed average over
static flux distributions in equation (31), the transport

properties are the same as those studied in reference [33].
In particular, the scattering rate has been found [33]

1
τ
� 2kBT,

if � > π/2, which is satisfied in our case according to
equation (39) in the high-T limit. Corresponding, the re-
sistivity is

ρ ∼ T at T 
 1. (40)

Namely, the charge transport in high-T “deconfining
phase” will generally follow a strange-metal behavior due
to the scattering between the holons and gauge field As

in equation (31).
In the crossover from the low-T VRH behavior (35)

to the high-T linear temperature behavior (40), one ex-
pects to see a minimal resistivity ρmin. We point out that
generally the “deconfining temperature” Tde does not nec-
essarily coincide with the characteristic temperature of
ρmin. The latter may occur at a lower temperature as the
fluctuations in As can already become important when
the Néel temperature TN is approached from below. In
the above discussion of the VRH resistivity, such a scat-
tering effect has been neglected at low-T , which should
lead to the enhancement of the resistivity once it becomes
important. Another possibility is that the holon induced
antimerons may start to move with the increase of tem-
perature, resembling the “flux-flow” in a superconducting
phase, which also may lead to a qualitative change of the
resistivity. These possibilities in the intermediate temper-
ature regime are beyond the scope of the present work.

3.3 Dielectric constant

Another interesting prediction of the self-localization of
doped holes is the existence of a large and doping-
dependent dielectric constant as each hole is a dipolar ob-
ject of a bound state of a holon and a localized antimeron.
One thus expects that the dielectric constant increases
linearly with doping initially and finally diverges as the
deconfining point is approached with increasing doping
concentration.

The dielectric constant defined in the RG analysis in
Section 2.3 can be written by κ(l) = X(l)βq2/2π. We can
determine κ = κ(l = ∞) = X(l = ∞)βq2/2π by equa-
tion (24) numerically (taking κ(l = 0) = 1). Figure 4
and the inset show the results for κ− 1 at T = 0.1 q2

2π and
T = q2

2π , respectively. At half-filling, κ = 1, as no contribu-
tion from the hole-dipoles. We see that with the increase
of the hole concentration, the dielectric constant grows lin-
early with δ at first, then deviates the linearity shown by
the dashed line, indicating the increase of the dipole size.
Eventually it diverges at a critical doping concentration
δde = δde(T ), beyond which the dipoles will collapse and
free holons will be released.

The general trend of the calculated in-plane dielectric
constant, shown in Figure 4, qualitatively agrees [34] with
the experimental measurements [5,6] in the low-doping
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δ

δκ

Fig. 4. The dielectric constant κ as a function of doping cal-
culated at different temperatures. κ = 1 at half-filling, and the
dashed lines indicate the linear dependence of the doping con-
centration. In the main panel, κ diverges at δde = 0.038 and in
the inset δde = 0.008.

cuprates. Indeed, for the lightly-doped cuprates, a large,
doping-dependent dielectric constant has been observed
in the ab-plane, which increases with the hole concen-
tration δ, initially linearly then becoming divergent at
some higher concentrations [5,6]. In contrast, the out-
plane (c-axis) dielectric constant shows no essential change
as a function of δ.

In a doped-semiconductor picture, a dielectric constant
contributed by the doped holes can only be significant
when the holes are bound to impurities, which is in the
localized regime at low temperature. But such a dielectric
constant should be usually anisotropic 3D-like rather than
pure 2D-like as the experiment revealed. Especially it is
difficult to explain why the dielectric constant should di-
verge in the ab-plane while remains constant in the c-axis.
Furthermore, if the majority of the holes remains bound to
impurities, it is hard to reconcile with the large saturated
thermopower observed at T � 100 K.

In contrast, the dipolar structure of the doped holes in
the present framework can naturally lead to a large dielec-
tric constant in the ab-plane, no matter whether the hole-
dipoles are pinned down by impurities or not, as long as
the hole dipole composites remain stable. The hole dipoles
are presumably de-pinned from impurities at T � 100 K
in our theory, since a large thermopower has been seen
in experiment. With further increasing temperature, the
dipolar structure will eventually collapse and the holon
will become deconfined from its antimeron partner. Con-
sequently the large dielectric constant and thermopower
should be both quickly reduced above Tde, where the re-
sistivity also starts to behave like a strange-metal as T
becomes sufficiently high.

4 Conclusions
In this paper, we studied the motion of doped holes in
a spin ordered background at low doping. Based on the
phase-string model, we demonstrated that the holes will
get self-localized in space, leading to spontaneous transla-
tional symmetry breaking without the presence of disorder
or impurities.

This novel property is an important consequence of
the Mott insulator at low doping, described by the phase-
string model as the low-energy effective description of the
t − J Hamiltonian. The doping effect and the interplay
between charge and spin degrees of freedom are character-
ized by a unique gauge structure with a mutual duality.
At low doping, the spinon condensation forces a “confine-
ment” on the holons, making the latter self-localized and
resulting in an insulator with AFLRO or spin glass. This
is in contrast to the higher-doping phase, where the holon
condensation forces a “confinement” on the spinon part,
resulting in a superconducting phase coherence [17].

We found strong experimental implications based on
the self-localization of holes. Large and doping-dependent
thermopower can naturally explain the experimental data
which had been very hard to understand by conventional
theories. A large and doping-dependent in-plane dielec-
tric constant indicates a composite structure of the holes
and provides a unique explanation of the experimental ob-
servations, which otherwise are very difficult to compre-
hend. Furthermore, the low-T VRH resistivity observed
experimentally was interpreted as the direct consequence
of the self-localization with disorders playing a minor role,
which explains why the critical doping of the delocaliza-
tion in the cuprates is universally around δc ∼ 0.05 at
T = 0, not very sensitive to the density of disorders in
the samples. The phase-string model also naturally shows
how the resistivity evolves into a strange-metallic linear-T
behavior at sufficiently high temperatures above the de-
localization temperature. Most importantly, we wish to
emphasize that all these peculiar experimental properties
were shown to be explained consistently within a single
theoretical framework.

It should be noted that many results in this paper are
correct only for a homogeneous phase. There may exist an-
other possibility, namely, the stripe instability [10] in the
phase string model, which can result in an inhomogeneous
phase. Since holes are self-localized, their kinetic energies
are suppressed such that the potential energy will become
predominant. The dipole-dipole interaction might cause
stripe instability at low temperatures, with hole-dipoles
collapsing into a one-dimensional line-up (stripe) [10]. The
pinning effect of disorders may stabilize the homogeneous
phase at low-T, so does the long-range Coulomb interac-
tion. But it would be very interesting to incorporate the
inhomogeneous tendency in various dynamic properties at
low doping in future investigations.

Finally we comment on the problem of a single-hole
doped into the half-filling antiferromagnetic ground state,
which has been extensively studied based on the finite-size
exact diagonalization as well as the self-consistent Born
approximation, both of which suggesting a finite quaipar-
ticle spectral weight [35–37]. However, the phase string ef-
fect shows [11] that the spectral weight must be vanishing
if the hole is mobile. In fact, the doped hole is always local-
ized by the phase string effect as discussed in reference [8].
This discrepancy with the aforementioned numerical re-
sults has been attributed [8] to the fact the localization
lengths are usually relatively larger than the sample size
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(in order to properly determine such a localization length,
the kinetic energy of the hole must be considered). In the
present approach for the dilute but finite density of holes,
the effect of screening on the potential energy has been
taken into account by the RG method. But the kinetic
energy of doped holes is not included since they are con-
fined to the immobile merons, whose effect may affect the
critical value of xc and Tde, but not the qualitative behav-
ior of the holon confinement at low doping.
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